
 Weaver – Documentation
 for version 0.0.1
 by Modula.dev

 Table of Contents

 Getting Started
 Download the Source Code
 Example Application

 Function Documentation
 weaver.add_route(regex, function)
 weaver.add_file(filename)
 weaver.router(request)
 weaver.pre_router(request)
 weaver.pre_uid(request)
 weaver.server(optional: port)

 Page 0
 Weaver Documentation, Version 0.0.0
 © John Lathrop, 2023

http://modula.dev/
https://modula.dev/weaver.js

 Weaver – Documentation
 for version 0.0.1
 by Modula.dev

 weaver.add_route(regex , function)
 A route is an object containing a regular expression and a function which will be passed in a
 request object if the route is called. Routes that are added earlier are given higher priority over
 routes added later. The request object will contain useful pieces of data like the request.url , the
 request.query , request.uid , and request.method .

 weaver.add_file(filename)
 This function takes a filename and creates a route who’s regex is a simple name-match. Make
 sure to include the leading “/” in the filename . If provided a filename like

 weaver.add_file(“/static/mainpage.md”)

 It will do basically the same thing as

 weaver.add_route(/^\/static/mainpage.md/, (request)=>{
 return {status:200, mime:’text/plain’,
 content: fs.readFileSync(“/static/mainpage.md”)} })

 Page 1
 Weaver Documentation, Version 0.0.0
 © John Lathrop, 2023

http://modula.dev/

 Weaver – Documentation
 for version 0.0.1
 by Modula.dev

 weaver.router(request)
 The router is a function that takes a request-object and returns an object containing a status
 code, a MIME-type, and some content-body. The default router’s behavior is to find the first
 route which matches the request.url , and then pass the request into it and return.

 For a very simple example, let’s say you added a route like:

 weaver.add_route(/\/home\/.*/ , (request)=>{
 return {status:200,
 mime:’text/raw’,
 content: ‘hello, world’}

 })

 When you request a resource with the URL, the default router will test whether the URL
 matches the regex /\/home\/.*/ . If you decide to replace the default router,
 remember that it is always expected to return either a valid page, or undefined

 weaver.pre_router(request)
 The pre-router is a function that takes the request-object and modifies it before it is handed off
 to the router. The default pre-router’s behavior is to promise the request object will have
 properties like request.uid , request.method , request.url , and to decode html symbols like spaces
 from %20 in the URL

 weaver.pre_uid(request)
 The pre-uid is a function that takes the request object and hashes it into a number. The
 algorithm used is very basic and intentionally information-lossy; it does not contain any
 information that is personally identifiable , while still allowing applications to remember which
 user they’re responding to

 Page 2
 Weaver Documentation, Version 0.0.0
 © John Lathrop, 2023

http://modula.dev/

 Weaver – Documentation
 for version 0.0.1
 by Modula.dev

 weaver.server(optional: port number)
 At the end of your file, once you’ve created all of your routes, you’ll call this function to start
 hosting the server over either the specified or default port. For shared-hosting applications,
 leave this value empty.

 Example Application
 Let’s say you wanted an application with one catch-all route that just tells the user what their
 UID was, the method they requested the page with, and the resource they requested.
 That file might look something like this:

 const weaver = require(“./weaver.js”)
 weaver.add_route(/\/.*/, main)
 function main(request) {
 return {
 status: 200,
 mime: “text/html”,
 content: `UID ${request.uid} URL ${request.url} VIA ${request.method}`
 }}
 weaver.listen()

 Page 3
 Weaver Documentation, Version 0.0.0
 © John Lathrop, 2023

http://modula.dev/

